ICoTA Canada AGM March 19th 2014

SPE 167148-MS

Optimizing Well Completions in the Canadian Bakken: Case History of Different Techniques to Achieve Full ID Wellbores

Domingo Alvarez, Lightstream Resources

Society of Petroleum Engineers

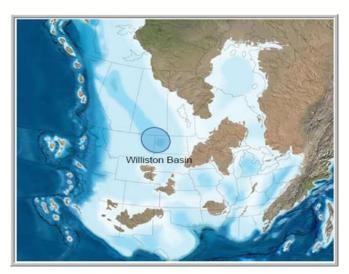
Agenda

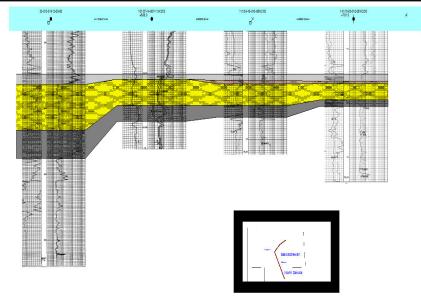
- Introduction
- Geology
- History
- System Descriptions
- Summary of operations
- Time analysis
- Cost analysis
- Production analysis
- Conclusions
- Acknowledgements / Q&A

Introduction

- SE Saskatchewan
- 900 wells by mid 2012
- Interventions needed
- Cost increases for future
 intervention

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA


GEOLOGY



Society of Petroleum Engineers

Geology

- Williston Basin
- The Bakken
 - Deposited 360 MM y.a. Late Devonian
 - 40m thick

- The Canadian Bakken
 - 4m -12m thick

2013 UNCONVENTIONAL RESOURCES CONFERENCE - CANADA

Geology

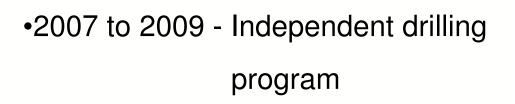
•"Oreo Cookie"

- Lower Bakken black anoxic shale (Exshaw equivalent)
- Middle Bakken slightly argillaceous, sandy, dolosiltstone
- Upper Bakken black anoxic shale

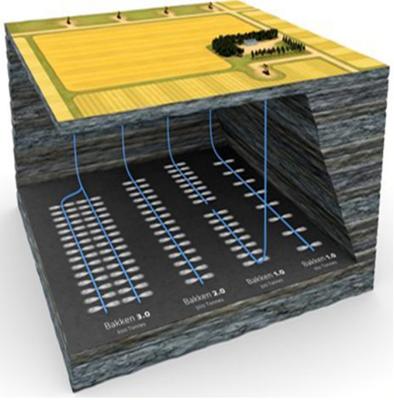
Geological hazards

- Upper water bearing Lodgepole
- Thinning Reservoir

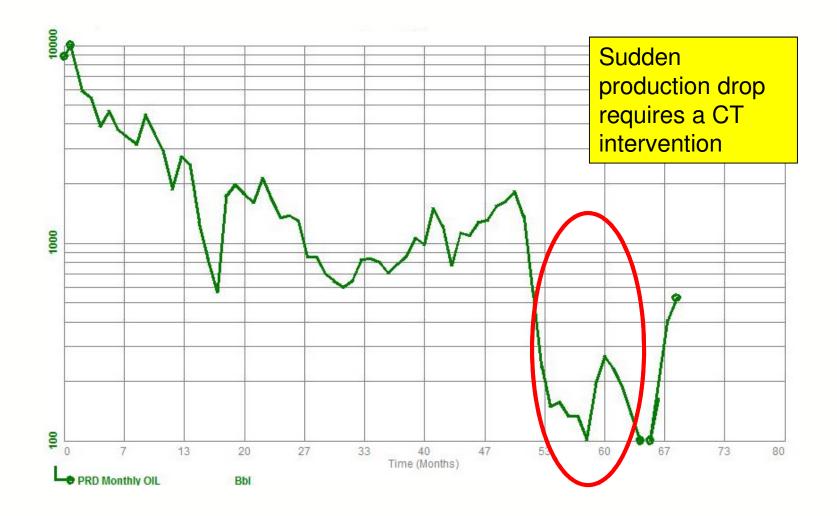
2013 UNCONVENTIONAL


5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

HISTORY



History


•2006 - Enters play as partner

•2009 to 2013 - Bilateral Wells Ball drop 16 stages/leg

History

History

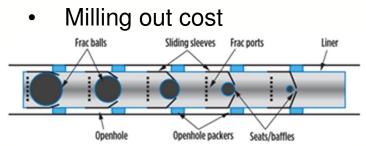
• Milling out summary:

Average cost	\$ 289,500	
Average cost per stage	\$ 23,750	
Average months after initial completion	34 months	
Average incremental production	22 BOPD	
Average fluid lost during milling out	350 m3	

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

SYSTEM DESCRIPTIONS

Society of Petroleum Engineers


System Descriptions

- Ball drop followed by milling out ball activated sleeves
 - Pros

Cons

- Less time
- Fewer equipment

Limited number of stages*

- •Retrievable seats Ball activated retrievable sleeves
 - •Pros

Cons

- Full ID
- Fewer equipment

- Post treatment service
- Retrieval challenges

2013 UNCONVENTIONAL

System Descriptions

- Hybrid coiled tubing deployed sleeve shifting tool as well as open hole packers
 - Pros
 - Sleeve shifting with coiled tubing
 - Full ID
 - Contingency options
 - Unlimited stages

- Cons
 - Longer time
 - More Equipment

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

OPERATIONAL ANALYSIS

Society of Petroleum Engineers

Operational Analysis

- Completions summary:
- Wells are drilled with 177.8 mm (7") intermediate casing to +/-1,550 m and 158.75 mm (6 ¹/₄") open hole to TD at 1,500 m TVD Operations are done with service rig Set frac liner with open hole packers and ON/OFF tool at heel to surface: 88.9 mm (3 ¹/₂") or 114.3 mm (4 ¹/₂") Fracturing is done down casing or CT Average of 10-14 days et et Nita inn et et Nita in et e Nita inter et Nita

Operational Analysis

- Frac summary
 - Containment is critical!

Number of stages	15-20 stages	
Average frac rate	0.6-0.8 m ³ /min	
Fluid type	Water based synthetic polymer	
Proppant Type	20/40 mesh sand	
Average volume per stage	25-30 m ³	
Average Tonnage per stage	3-5 Tonne	

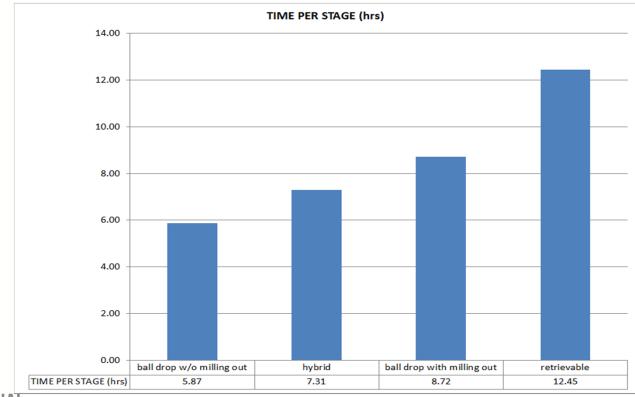
Operational Analysis

- Operations were done between Jan to Mar 2013
- All three system were tested in the field + one control well (i.e. ball drop without milling out)
- Three variables tracked: time, cost and production

Location	Frac date	Effective number of stages	Stages distribution (xDLL)	System
Α	Feb 05 / 2013	26	15x2	Ball drop with MO
В	Feb 09 / 2013	22		Hybrid
С	Feb 21 / 2013	30	15x2	Ball drop with MO
D	Feb 22 / 2013	10		Retrievable
E	Feb 24 / 2013	30	15x2	Ball drop with MO
F	Feb 25 / 2013	20		Ball drop with MO
G	Mar 05 / 2013	30	15x2	Ball drop w/o MO
Н	Mar 06 / 2013	18		Hybrid
1	Mar 16 / 2013	32	16x2	Hybrid
J	Mar 20 / 2013	28	16x2	Hybrid
К	Mar 21 / 2013	18		Hybrid
L	Mar 22 / 2013	38	19x2	Hybrid

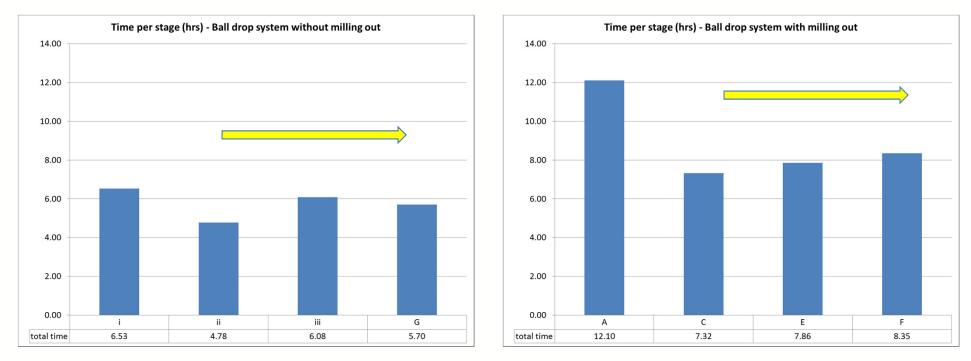
2013 UNCONVENTIONAL

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA


COMPLETION TIME ANALYSIS

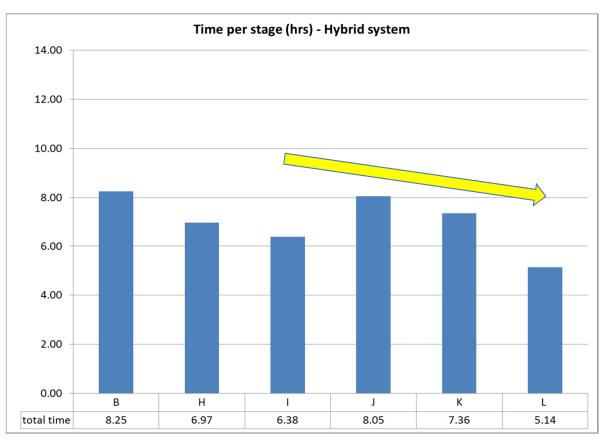
Society of Petroleum Engineers

Completions Time Analysis


- Time was normalized by the total number of stages
- Ball drop without milling out is the quickest method
- Hybrid took less time than the ball drop with milling out

2013 UNCONVENTIONAL RESOURCES CONFERENCE - CANADA SPE 167148 • Optimizing Well Completions in the Bakken • Domingo Alvarez

Completions Time Analysis


- Ball drop system
- Time stabilized around 5.5 hrs/stg without milling out and 8 hrs/stg with milling out
- 128 m³ fluid lost with immediate milling out compared with 350 m³

2013 UNCONVENTIONAL

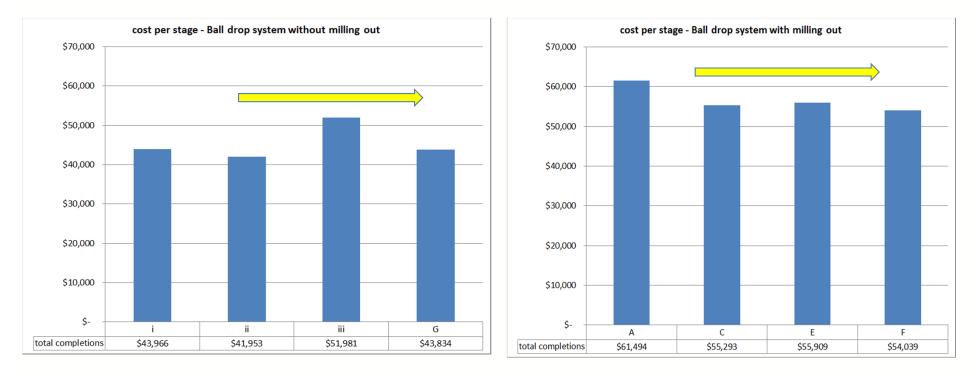
Completions Time Analysis

- Hybrid system
- Downward trend for time per stage

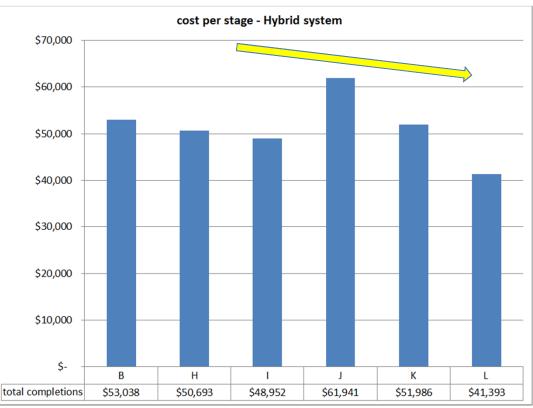
2013 UNCONVENTIONAL

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

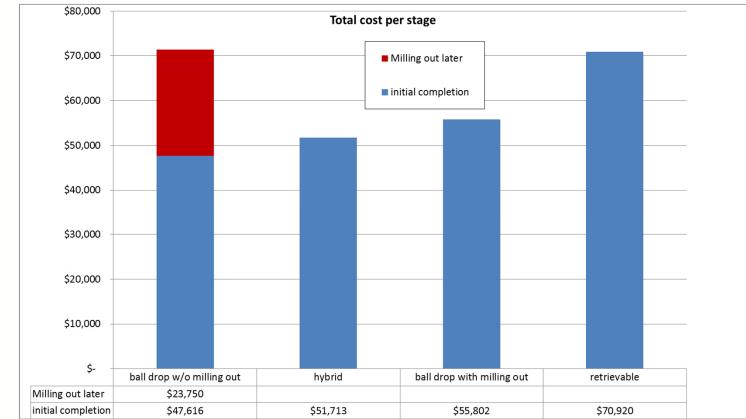
COMPLETION COST ANALYSIS



Society of Petroleum Engineers


- Cost was normalized by the total number of stages
- Similar trend as time per stage: ball drop w/o milling is less expensive

- Cost was normalized by the total number of stages
- Similar trend as time per stage: ball drop w/o milling is less expensive



- Cost was normalized by the total number of stages
- Similar trend as time per stage: ball drop w/o milling is less expensive

2013 UNCONVENTIONAL

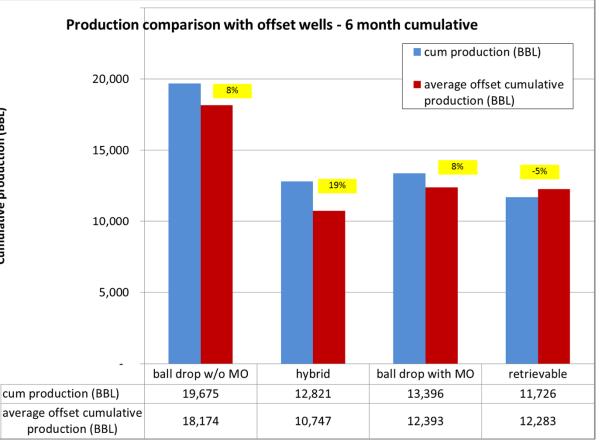
- Total wellbore cost
- Hybrid system provides the best economic proposition

 2013 UNCONVENTIONAL
 \$31,713
 \$55,802
 \$70,920

 RESOURCES CONFERENCE - CANADA
 SPE 167148 • Optimizing Well Completions in the Bakken
 • Domingo Alvarez

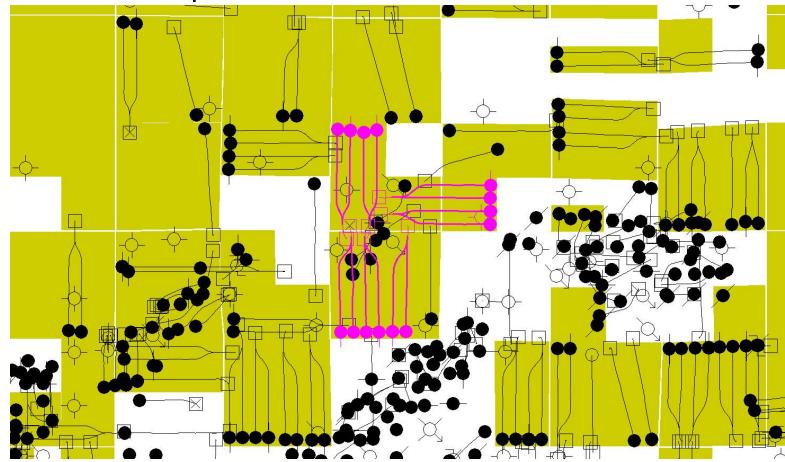
5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

PRODUCTION ANALYSIS

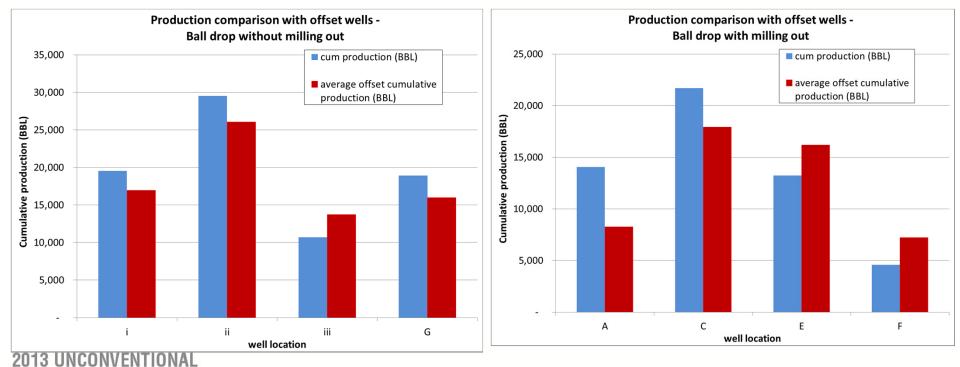


Society of Petroleum Engineers

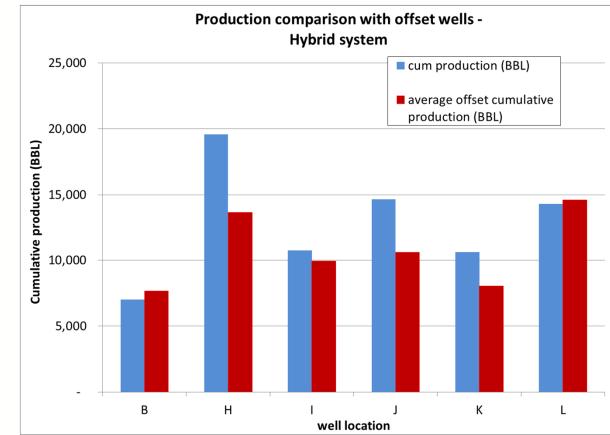
• Cumulative production for 6 months


Cumulative production (BBL)

- Offsets were comparable in terms of # stages and age with
 5 wells on average
 Production comparison with offset wells 6 month cumulative
- Higher than average offset production in most cases


2013 UNCONVENTIONAL

• Offset wells example



2013 UNCONVENTIONAL RESOURCES CONFERENCE - CANADA

- Mixed production results for ball drop system with or without milling out compared with offset wells
- · Ball drop with milling out wells presented more variability

 Hybrid wellbores consistently delivered wellbores with higher production in most cases compared with their offsets
 Production comparison with offset wells -

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

CONCLUSIONS

Society of Petroleum Engineers

Conclusions

- The ball drop without milling system out was the quickest, but the time added for future milling out makes the hybrid system quicker overall.
- The ball drop without milling system out was the least expensive during initial completions, but it left restrictions behind.
- It is better to milling out frac seats immediately after the initial completions rather than later, considering economical perspective and lower fluid losses.
- Production was above offset wells in all the system tested.

Conclusions

- Proper engineering and design were the driving factors in the selection of the wellbore completion, this completion method may not be the ideal solution for all cases.
- The hybrid system was the most cost effective method to achieve a full wellbore ID considering the total capital cost
- The hybrid system provided additional operational benefits:
 - Lower treating volume
 - Quick recover from screen out
 - Capability for post operation bottomhole data analysis
 - Unlimited number of stages

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

LATEST UPDATES

Society of Petroleum Engineers

Latest Updates

- Inter-stage pressure communication was observed with the "hybrid" system, about 20% of cases
- Risk of overstimulation into the same stage
- Cemented liners (CL) were tried during Q4 2013 and Q1 2014
- Some initial results
 - Lower water cut
 - Lower cost: cementation cost is independent of number of stages
 - Similar production level
- Paper to be presented at the SPE Western North America Meeting in Denver, CO on April 16-18th (SPE # 169574)

5-7 NOVEMBER 2013 • CALGARY, ALBERTA, CANADA

Acknowledgements

Lightstream Resources (formerly PetroBakken) Calfrac Well Services

Barry Hassen, Kene Ufondu, Dave Daer, Youssouf Zotskine, Ken Boulton, Eric Plante and Justin Meyer

Questions & Answers

Society of Petroleum Engineers